If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81y^2=4
We move all terms to the left:
81y^2-(4)=0
a = 81; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·81·(-4)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36}{2*81}=\frac{-36}{162} =-2/9 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36}{2*81}=\frac{36}{162} =2/9 $
| 2|x-3-5=7 | | 3+8+4x=20 | | 2b+10=+2 | | 2q=-18 | | -16=x÷4+2 | | x+8=3x/5 | | 5=72+8w+2 | | (3z-1)(3+z)=0 | | 4P=81x-29970 | | 4P=81x-29,970 | | 3x+2+5x=14-6x | | 88=n-88 | | z=45. | | x^2−6x−16=0 | | 5x+3x-9=4+6x+7 | | 4r^2+11r−3=0 | | 4r2+11r−3=0 | | 3m^2+7=0 | | Y2-6y=-6 | | 2x+3x-20+2x+3x-20=360 | | 12+x2=44 | | 3x+^4=4x-6 | | −5(x−4)+5x=4x−2(x−3)+30 | | 16x+21x=146 | | 24=3x^2-6x | | 3(x-8)=-30 | | 1+3 | | x(x-8)=-30 | | (6^x)-1.4=0 | | 6^x-1.4=0 | | 0.36÷0.009=p | | 4y²-24y=0 |